Image Matching Datasets

This post summarized the most used benchmark datasets for the Image Matching Task.

Dataset nameSize (pairs)ClassSource datasetsAnnotationsCharacteristics
Caltech-1011,515101Caltech-101object segmentationtightly cropped images of objects, little background
PASCAL-PARTS3,88420PASCAL-PARTS 
PASCAL3D+
keypoints (0~12), azimuth, elevation, cyclo-rotation, body part segmentationtightly cropped images of objects, little background, part and 3D information
Animal-parts≈7,000100ILSVRC 2012keypoints (1~6)keypoints limited to eyes and feet of animals
CUB-200-2011120k200CUB-200-201115 part locations, 312 binary attributes, bboxtightly cropped images of object, only bird images
TSS4009FG3DCar, JODS, PASCALobject segmentation, flow, vectorscropped images of objects, moderate background
PF-WILLOW9005PASCAL VOC 2007, Caltech-256keypoints (10)center-aligned images, pairs with the same viewpoint
PF-PASCAL1,30020PASCAL VOC 2007keypoints (4~17), bboxpairs with the same viewpoint
SPair-71k70,95818PASCAL3D+, PASCAL VOC 2012keypoints (3~30), azimuth, viewpoint diff., scale diff., trunc. diff., occl. diff., object seg., bboxlarge-scale data with diverse variations, rich annotations, clear dataset splits

CUB-200-2011

  • Paper: C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The Caltech-UCSD birds-200–2011 dataset,” Tech. Rep., 2011.
  • Contains 11,788 images of 200 bird categories, with 15 parts annotated

TSS dataset

  • Paper: T. Taniai, S. N. Sinha, and Y. Sato, “Joint recovery of dense correspondence and cosegmentation in two images,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 4246–4255.
  • Consists of 400 image pairs divided into three groups: FG3DCar, JODS, and PASCAL

PF-WILLOW dataset

  • Paper: B. Ham, M. Cho, C. Schmid, and J. Ponce, “Proposal flow,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 3475–3484.
  • Includes 10 object sub-classes with 10 keypoint annotations for each image.
  • Download: https://www.di.ens.fr/willow/research/proposalflow/

PF-PASCAL

  • Paper: B. Ham, M. Cho, C. Schmid, and J. Ponce, “Proposal flow,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 3475–3484.

SPair-71k

  • Paper: J. Min, J. Lee, J. Ponce, and M. Cho, “Hyperpixel flow: Semantic correspondence with multi-layer neural features,” in Proc. IEEE Int. Conf. Comput. Vis., 2019, pp. 3395–3404.
  • Provides 70,958 image pairs of 18 object categories with ground-truth annotations for object bounding boxes, segmentation masks, and keypoints. The image pairs feature various changes in viewpoint, scale, truncation, and occlusion.

Leave a Reply Cancel reply